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Composite models in general relativity 

J C HARGREAVES 
Department of Physics, Royal Holloway College, Englefield Green, Surrey, UK 

MS received 22 June 1971 

Abstract. The stability of static spherically symmetrical fluid spheres, consisting of a core 
and an envelope, is investigated on the basis of general relativity. It is assumed that the 
core consists of ideal gas and radiation, in which the ratio B of the gas pressure to the total 
pressure is a small constant, and that the envelope consists of an adiabatic gas. Numerical 
analysis indicates that for a given U = p,/pbc2 (the ratio of the central pressure to the central 
rest-energy density) the stability of such a sphere depends strongly on the position of the 
interface separating the core from the envelope, the sphere being stable for a greater range 
of values of U the closer the interface is to the centre. 

1. Introduction 

Iben (1963), in studying the stability of a succession of static fluid spheres, drew attention 
to the importance of the binding energy in determining the behaviour of a given model. 
Since then problems of stability of quasi-static configurations have been analysed from 
this point of view. Tooper (1964), when considering static general relativistic polytropic 
fluid spheres, found that, although a negative binding energy is a necessary condition 
for instability it is not a suficient condition. Subsequently Tooper (1965a) has shown 
that for small values of 0 at least the binding energy is a maximum at the point of onset 
of instability ; for larger values of 0 the configuration is unstable against radial perturba- 
tions and for a polytropic sphere of index n = 3 the sphere is unstable for all values of 
0, the binding energy being always negative. 

Without going into details we may state that even typical stars on the main sequence 
in the Hertzprung-Russel diagram contain certain inhomogeneities. The core-where 
the thermonuclear transmutation of hydrogen occurs-is represented by one set of 
equations whereas the envelope is characterized by another set. White dwarfs and red 
giants exhibit a composite nature to an even greater degree. A white dwarf is expected 
to consist of relativistic degenerate matter near the centre but the degeneracy in the outer 
parts, at  least, is expected to be non-relativistic. 

It is shown in the present paper that the introduction of an ideal gas envelope has 
the effect of increasing the binding energy and raising the value of 0 at which this binding 
energy is a maximum thus rendering the sphere more stable against radial perturbations. 

2. Basic equations 

2.1. Field equations 

Using a co-moving coordinate system at rest with respect to the fluid the components 
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212 J C Hargreaves 

of the energy-momentum tensor may be written 

Ti = T i  = T i  = - p  T i  = pc2 

and with the metric in the form 

ds2 = - eA dr2 - r2(d02 + sin20 d4?)+  e' dt2 

where 1, = I(r), v = v(r) are functions of r only, the field equations may be written 

and 

- 8nGp = e-"j :+$) -- 1 
c4  r 2  

dP V' 
- = - ( p + p c ' ) 2 .  
dr 

Equation (2.4) may be integrated immediately by writing it in the form 

8nGpr2 . I  

~ = l - ( re-")  
c2 

and consequently 

e -L = 1 --jo 2G 4npr2 dr .  
rc2  

(2.3) 

( 2 . 5 )  

Defining the mass inside the radius r (arising from all causes) as measured by an external 
observer to be M ,  so that 

M ,  = j: 4npr2 dr 

equation (2.6) may be written as 

(2.7) 

Equations (2.3), (2.4) and (2.5) are three independent equations in four unknowns 
I ,  v, p and p ,  and thus in order to solve them completely it is necessary to introduce a 
further condition. This usually takes the form of an equation of state p = p ( p )  con- 
necting the pressure p with the density p .  However, other approaches have been used 
(Einstein 1939, Tolman 1939, Thompson and Whitrow 1967), which either supplement 
or replace the equation of state but these will not be considered in this paper. 

2.2. Equation of state 

A relativistic equation of state proposed by Tooper (1965a) for a perfect gas undergoing 
an adiabatic process is given by 

p c 2  = p g c 2  + n p  (2.9) 1 + l / n  P = KPg 

where p g  is the density of the rest-mass of the gas and n = l/(y - 1). The velocity of 
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sound for this equation of state, unlike that for a polytrope, is always less than light 
provided that the index n 3 1. (This equation of state will be used in the envelope.) 

Another equation of state (which will be used in the core) is that of a mixture of perfect 
gas and isotropic radiation at a temperature T (Tooper 1965b). 

The total pressure may be expressed as 

P = P g + P r  

where 

and p r  = 4aT" (2.10) 

are the pressures of the gas and radiation respectively. Here p g  is the gas density, k is 
Boltzmann's constant, p is the molecular weight and H is the mass of a proton. 

Since p is the total density, that is the sum of the densities of the rest mass of the gas, 
the energy content of the microscopic kinetic energy of the gas and the energy of the 
radiation, it follows that 

pc2 = pgc2+-+3pr  PB 
Y-1 

where y is the ratio of the specific heats of the gas. Now if we define B as the ratio of 
the gas pressure to the total pressure we have 

P g  = BP and P I  = (1 -PIP  
and consequently 

1 
3 

(1 - /?)p = -UT". (2.11) 

If is constant, elimination of T between the above equations gives 

431-p 113 
p = K ( ~ ) P : ' ~  where K(B) = {( ") - -} 

PH a B" 
and so the equation of state in parametric form becomes 

pc2 = pgc2 +-K(~)P: /~  B + 3(1- P)K(B)P:'~ (2.12) 
1 -Y 

P = K(B)P:'3 

giving the total energy-density pcz in terms of the pressure p .  

2.3. The composite model 
In order to avoid unnecessary repetition, the equation of state will be taken in the general 
form 

8 pc2 = p g c 2 + A p  (2.13) p = Kp'+'h 

where the appropriate values of the constants A and n will be chosen to correspond to 
the particular equation of state under consideration. 

2.3.1. Core. The equation of state for the core is given by equation (2.12) or equivalently 
by(2.13)with n = 3 andA = {/?/(y-1)}+3(1-/3). 



214 J C Hargreaves 

2.3.2. Envelope. The equation of state in the envelope is taken to be equation (2.9) or 
equation (2.13) with A = n, (n < 3). 

The distance from the centre of the configuration at which (2.12) must be replaced 
by (2.9) we will define as the interfacial radius. Clearly the envelope as such would not 
exist if we were to assume that P is the same constant throughout the configuration, for 
in this case the index n in equation (2.13) would be equal to 3 and A would be given by 
A = { P/(r  - 1)) + 3(1- P). However, except possibly in the case of extremely massive 
stars (2 lo8 solar masses), P is unlikely to be constant throughout the model. In fact 
Hoyle and Fowler (1964) have shown that for polytropes in which Pis small it will depend 
on the polytropic variable 0 according to the relation 

(2.14) 

where the symbols have their customary meanings. It follows that if P is small then only 
for a polytrope of index 3 is P a constant throughout the model, being in fact given by 

4.3 M ,  
P - -[-) P M  (2.15) 

where M ,  is one solar mass. 

(1930) for p and for the total mass M giving 
An alternative way to obtain equation (2.14) is to use two expressions given by Milne 

(2.16) 

For n < 3 it follows that near the surface (where 19 -+ 0) the right-hand side of (2.16) is 
very large, which of course means that P is close to unity, and hence the radiation 
pressure becomes small compared with the gas pressure. The equation of state may then 
be taken as that for an adiabatic sphere (2.9), since p = 1 at the surface. 

2.4. Characteristic equation ,for core and enuelope 

2.4.1. Core. We define o by 

then in terms of the dimensionless variables 5,  l3 and V(5)  defined by 

(2.17) 

(2.18) 

(2.19) 

where r is the radius and M ,  is the mass inside the radius r and where a2 = oc2/nGp, 
the equation of hydrostatic equilibrium becomes 

(2.20) 
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and 

(2.21) 

which are to be solved subject to the usual boundary conditions 

(2.22) 

The solutions are relativistic generalizations of the usual Lane-Emden solutions but, 
unlike the case of complete models, the surface, the total mass, the radius, etc can only 
be defined when the equation of state (2.12) holds throughout. We can, however, define 
the interfacial values (denoted by subscript i) of these quantities. 

At the interface (where the envelope joins onto the core) the radius ri is given by 

ri = ati  (2.23) 

and the pressure and density of the rest-mass of the gas by 

pgi = P&O? 

p .  I = c 1  e? = ~ ( p ) ~ ; p ;  
and 

hence the total energy density at the interface is given by 

(2.24) 

and the mass inside this interface is 

Mi = 4np,c13v({i). (2.26) 

2.4.2. Envelope. For the envelope we shall take the equation of state to be (2.13) with a 
general n = n ,  < 3 and with A replaced by A , .  To avoid confusion with the cor- 
responding quantities in the core the variables {, 0 and V ( t )  in the envelope will be 
replaced by q, 4, Vl(q) respectively, and the envelope values of the parameters c, n, c1 

will be indicated by the subscript 1. 
By analogy with the analysis in the core it is convenient to introduce a new variable 

4 defined by 

P e  = P&dJfll (2.27) 

where the value pBF is identical with that in equation (2.18). We also define 

KIP;!' 
g1 = -- 

C2 

and write 
= ~ l p l & + l / n l ~ " l + l  

and 

(2.28) 

(2.29) 

r = u , q .  (2.30) 
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For the mass inside radius r we have 

where 

(nl + l)alc2 
U: = 

47@& . 
The equations of hydrostatic equilibrium for the envelope become 

and 

(2.3 1)  

(2.32) 

(2.33) 

(2.34) 

Although in general the required solutions of the differential equations (2.33) and 
(2.34) will not, in this case, be the usual generalizations of the Lane-Emden solutions 
since they do not extend to the centre, we can nevertheless readily define the total mass, 
the radius, etc of the model. The outer surface is taken to be that radius r = R where 
the pressure vanishes. In other words, the surface corresponds to the smallest positive 
value qs for which 

dJ(rls) = 0 (2.35) 

and its radius is given by 

R = a lqs .  

Similarly the total mass will be given by 

(2.36) 

At the interface the value ri of the radius will be 

ri = alqi (2.38) 

and the interfacial values of the pressure, rest-mass density of the gas and the total 
energy density will be, respectively 

(2.39) 

(2.40) 

and 

pic2 = pgi1c2+A1pi. (2.41) 

We may also express the mass inside the interfacial radius ri by 

Mi = 47cp,u:v1(~i). (2.42) 

2.5. Interfacial boundary conditions 

Since the pressure is to be continuous everywhere and in particular at the interface 
then the values of this quantity given by equations (2.12) and (2.9) must be identical. 



Composite models in general relativity 217 

Table 1. Summary of solutions of equations (2.33) and (2.34) for various ti 

n ,  = 1 

ti Bi 9 

0.0 
0.0 
0.0 
0.0 

0.5 
0.5 
0.5 
0.5 

1 .o 
1 .o 
1 .o 
1 .o 
1.5 
1.5 
1.5 
1.5 

2.0 
2.0 
2.0 
2.0 

2.5 
2.5 
2.5 
2.5 

3.0 
3.0 
3.0 
3.0 

1 .o 

0.96 

0.85 

0.72 

0.58 

0.46 

0.35 

0.0 

0.04 

0.25 

0.63 

1.05 

1.40 

1.66 

0.0 

0.68 

1.21 

1.53 

1.65 

1.63 

1.52 

1 .o 

0.88 

0.62 

0.37 

0.20 

0.10 

0.05 

0.0 

0.09 

0.44 

0.66 

0.58 

0.39 

0.22 

1 .o 
2.0 
3.0 
3.14 

0.9 
1.5 
2.0 
3.1 

1.3 
1.5 
2.0 
3.0 

1.6 
2.0 
2.5 
2.9 

1.74 
2.0 
2.4 
2.7 

1.7 
2.0 
2.2 
2.4 

1.6 
1.7 
1 43 
2.1 

0.84 
0.45 
0.05 
0.0 

0.84 
0.64 
0.44 
0.02 

0.59 
0.52 
0.35 
0.03 

0.34 
0.23 
0.10 
0.01 

0.17 
0.12 
0.04 
0.003 

0.08 
0.04 
0.02 
0.004 

0.04 
0.03 
0.02 
0.002 

0.30 
1.74 
3.1 1 
3.14 

0.2 
0.82 
1.6 
3.0 

0.54 
0.76 
1.4 
2.5 

0.75 
1.1 
1.5 
1.7 

0.6 
0.8 
0.9 
1 .o 
0.4 
0.48 
0.5 1 
0.53 

0.22 
0.23 
0.24 
0.25 

0.0 1 .o 
0.0 
0.0 
0.0 

0.5 0.96 
0.5 
0.5 
0.5 

1 .o 0.85 
1 .o 
1.0 
1 .o 
1.5 0.72 
1.5 
1.5 
1.5 

0.0 0.0 1 .o 0.0 1 .o 
2.0 
3.0 
3.65 

0.04 0.6 0.92 0.07 1.0 
2.0 
3.0 
3.6 

0.25 1.06 0.73 0.3 1.2 
2.0 
3.0 
3.7 

0.63 1.31 0.52 0.42 1.5 
2.0 
3.0 
3.9 

0.84 
0.49 
0.16 
0.0 

0.80 
0.48 
0.15 
0.01 

0.69 
0.45 
0.1 7 
0.02 

0.46 
0.34 
0.13 
0.001 

0.29 
1.49 
2.56 
2.71 

0.28 
1.40 
2.50 
2.67 

0.40 
1.20 
2.2 
2.4 

0.55 
0.96 
1.64 
1.8 
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Table 1. (cont) 

n, = 1.5 (cont.) 
5 i  @i V(Si) vi 4i V,(Vi) 4 C’1(v) 

2.0 0.58 1.05 1.39 
2.0 
2.0 
2.0 

2.5 0.46 1.40 I ,32 
2.5 
2.5 
2.5 

3.0 0.36 1.66 1.2 
3.0 
3.0 
3.0 

0.34 0.34 1.6 
2.0 
3.0 
4.1 

0.21 0.2 1.5 
2.0 
3.0 
4.4 

0.13 0.10 2.0 
3.0 
4.0 
5.2 

0.3 
0.22 
0.1 1 
0.006 

0.2 
0.1 5 
0.08 
0.005 

0.08 
0.05 
0.02 
0.001 

0.42 
0.65 
1 .0 
I .2 

0.24 
0.33 
0.53 
0.68 

0.17 
0.27 
0.3 5 
0.38 

0.0 
0.0 
0.0 
0.0 

0.5 
0.5 
0.5 
0.5 

1 .o 
1 .o 
1 .o 
1 .o 

I .5 
1.5 
1.5 
1.5 

2.0 
2.0 
2.0 
2.0 

2.5 
2.5 
2.5 
2.5 

3.0 
3.0 
3.0 
3.0 

1 .o 

0.96 

0.8 5 

0.72 

0.58 

0.46 

0.36 

0.0 0.0 

0.04 0.5 

0.25 0.99 

0.63 1.25 

1.05 1.34 

1.40 1.30 

1.66 1.2 

1 .o 

0.94 

0.8 

0.6 1 

0.44 

0.3 I 

0.2 1 

0.0 

0.04 

0.24 

0.36 

0.32 

0.2 1 

0.12 

1 .0 
2.0 
3.0 
4.35 

I .o 
2.0 
3.0 
4.3 

2.0 
3.0 
4.0 
4.48 

2.0 
3.0 
4.0 
4.9 

2.0 
3.0 
4.0 
5.7 

3.0 
4.0 
5.0 
7.1 

3.0 
5.0 
7.0 
9.04 

0.85 
0,52 
0.24 
0.0 

0.8 
0.5 
0.25 
0.003 

0.5 
0.23 
0.06 
0.006 

0.42 
0.23 
0.09 
0.001 

0.3 
0.2 
0.1 
0.002 

0.17 
0.1 
0.06 
0.001 

0.12 
0.06 
0.02 
0.003 

0.27 
1.30 
2.16 
2.41 

0.3 
I .z 
2. I 
2.4 

1.2 
2.0 

2.27 

0.9 
I .5 
I ,86 
1.9 

0.6 
I .o 
I .3 
144 

0.60 
0.80 
0.98 
1.05 

?.? - -  

0.3 
0.6 
0.78 
0.8 1 
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Also from the definitions of a and a1 we have 

Hence from equations (2.43) and (2.44) 

which becomes, on using the definitions of 0 and 4 

Since at the interface the respective values of r and h , given by equations (2 
and (2.26), (2.42) must be identical, it follows that 

r .  = a t .  = a 
1 l'li 

and 

Mi = 4np,a3V(ti) = 4npgCa;V1(qi) 

and hence 

a3v(5i) = a;Vl(Vi). 

From the definitions of a and a 1  we have 

and 

219 

(2.43) 

(2.44) 

(2.45) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

In order to solve the equations for v i ,  $i,  V(qi) and al, given the values of ti ,  d,, 
V(&) and a in the core we must have a further condition, this maybe afforded by the 
continuity of p ,  and so from equation (2.41) 

e: = 4; + ( A  - A)efc. (2.52) 

From equation (2.52) it follows that in the classical limit (a + 0) equation (2.46) becomes 

(2.53) 

Thus for given values of ti and 0 the interfacial values v i ,  4i,  Vl(qi) and also crl can be 
determined. These values provide the necessary (interfacial) boundary conditions to 
be satisfied in solving equations (2.33) and (2.34). 

Numerical results are given in table 1 for small values of a, 
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3. Binding energy 

The energy of all the constituent particles of the gas dispersed to infinity with zero 
internal energy is given by 

E,, = M,,c2 = 47cp,c2 eii2r2 dr IoR (3.1) 

where MO, ,  the rest-mass of the gas can, at least in principle, be calculated by counting 
the constituent particles and multiplying by the appropriate rest-mass. 

We define the binding energy E ,  as the difference between the energy of the unbound 
particles dispersed to infinity with zero internal energy and the total energy of the bound 
system. Hence 

or 

E ,  = ( M O g -  M)c2  = J 4rcp,c2 eAi2r2 dr- J 4npc2r2 dr. (3.2) 
0 0 

In terms of the dimensionless variables 4 ,  8, V ( l ) ,  ‘I, 4, Vl(q), equation (3.2) for the 
binding energy becomes 

It is not apparent from inspection of equation (3.2) whether the binding energy is a 
positive or a negative quantity. For, although the gas density p e  is smaller than the 
total density, the factor eA is in general greater than unity. Consequently the sign of 
the binding energy can only be ascertained by detailed calculation. 

It was pointed out in the introduction that the binding energy plays a fundamental 
role in determining the stability of a given configuration but before we consider this 
question we shall analyse in detail the functional dependence of E ,  on the central density 
and the position of the interface. 

We begin by nothg that, in the particular case when the interface is at the outer 
surface, so that there is no envelope, equation (3.2) becomes 

where m is the total mass of this model. In the above expression (Eb)+ is just the binding 
energy of the complete model, the equation of state throughout being given by (2.12). 
The total mass rn is thus given by 
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For the difference in the binding energies of the composite model and the complete 
model we have, using equations (3.3), (3.4), (3.5) and (2.37) 

Eb-(Eb)<s = 4np&a3c2 ‘v(<s)-4xp,a:c2 Vl(v,) 

In this equation we see that, corresponding to each term that refers to the composite 
configuration, there is a term (in the core variables) that applies to the complete con- 
figuration (with a change in sign). Thus the result of any transformation of a composite 
configuration term can immediately be written down in terms of a similar transforma- 
tion of the corresponding complete configuration term with the appropriate change of 
variables. 

Thus using equations (2.34) and (2.20) together with (2.47), equation (3.6) becomes 

-1 I d V  -d< 
1 

- a 3  6’ ((1 -80V(t)/t)”~ d t  

(3.7) 

On expanding, we find that, in the classical limit 

the superscript (1) denoting classical values. This formula gives (in the classical limit) 
the excess in the binding energy of a composite model over that of the complete (no 
envelope) model with the same central density, the internal energy being included in 
the mass density. 

Using Appendix 1 together with a similar formula in terms of the core variables and 
the interfacial boundary conditions in equation (3.8) we obtain 

(3.9) 
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If the interface is at the centre of the configuration, equation (3.9) gives 

(3.10) 

and this is just the difference in binding energies of two complete models, one being a 
configuration for which the equation of state is given by (2.13) and the other being a 
configuration whose equation of state is given by (2.12). If p - 0, then from (2.12) it 
follows that A - 3 and hence the equation of state in the core is approximately identical 
in form with that of an adiabatic fluid of index 3 .  Consequently 

(E&' = 0 (3.11) 

in accordance with the usual classical result (see Rosseland 1949). Thus for an adiabatic 
fluid sphere of index n1 we have A ,  = l/b)- 1) = n , ,  and (3.10) becomes 

(3.12) 

Hence, in terms of the mass inside coordinate radius Y, we have 

ELI) = ~ 3 ;U1 JoR G,M:dM, 

which is just the usual expression for the binding energy (in the classical limit) in terms 
of the gravitational potential energy (see Rosseland 1949, Tooper 1964). 

If /3 - 0 in the core it follows from equation (3.9) that 

(3.13) 

In particular, if the envelope corresponds to that of an adiabatic fluid of index n ,  so 
that A ,  = n , ,  equation (3.13) gives 

(3.14) 

In terms of the dimensionless envelope variables (y, Cp, V,(V)) equation (A.9) of 
Appendix 2 becomes 

Consequently, equation (3.14) for the binding energy (in the classical limit) of a com- 
posite model in which the equation of state in the core is such that (3.11) holds, the 
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equation of state for the envelope being that of an adiabatic fluid of index n , , becomes 

E&’) = 47Cp,o,C1:C2J!,:’ (3.16) 

where 

+ (3.17) 

We may consider J $ )  as a ‘measure’ of the classical binding energy as a function of the 
position of the interface, given the central rest-density and the central pressure for a 
given value of n, . The graph of 3;:’ (for various indices n,) as a function of the position 
of the interface is shown in figure 1. For a given n ,  of the envelope we see that the 

Figure 1. The ‘measure’ of the classical binding energy j7:’ defined in equation (3.17) versus 
the position of the interface (ti) for various values of n, . The maximum value of each curve 
is seen to correspond with ti = 0 that is when the interface is at the centre and hence the 
configuration has no core. 

binding energy decreases as the position of the interface lies farther from the centre. 
In newtonian theory the condition for marginal stability of an adiabatic fluid is y = 4/3 
and the condition for instability is y e 4/3 (n, > 3) (Milne 1930, Rosseland 1949). 
The condition for instability is equivalent to E ,  < 0. In other words in newtonian 
theory, a negative binding energy is a necessary and sufficient condition for the instability 
of an adiabatic fluid sphere, and the higher the binding energy the more stable the 
model. This follows from the fact that the binding energy is the amount of energy 
required to disperse the constituent particles of the system to infinity against gravity. 
Thus a system with zero binding energy corresponds to marginal stability, and a tightly 
bound system has a high binding energy. From figure 1 we see that for a given index 
n, in the envelope, a model for which the interface is nearer the centre is more stable 
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than a similar model (same central pressure and density) with the interface farther from 
the centre. 

When the post-newtonian terms are taken into consideration, instabilities can occur 
even when the binding energy is positive (Tooper 1964, Fowler 1964). The effect of an 
envelope on the magnitude of the binding energy will now be considered from the 
standpoint of general relativity. Equation (3.7) becomes in the post-newtonian approx- 
imation 

(3.19) 

where 

It is easily verified that in the classical limit (3.19) reduces to equation (3.16). 
Using the interfacial boundary conditions, equations (3.19) and (3.20) yield 

E ,  - ( E b ) t s  = ~ Z ~ , U ? C T ~ C ~ J ,  -471p,M:CT,C2(n1 - 3)q"Y' + 3  

where 

(3.22) 
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This is the desired expression for the difference in the binding energies of (a) a composite 
model for which the equation of state in the core corresponds to that for a fluid sphere 
whose equation of state is (2.12) with j - 0, and for which the equation of state in the 
envelope is that for an adiabatic fluid of index n, and (b)  a complete model for which 
the equation of state throughout is the same as that of the core in (a). 

Before giving any quantitative results, we shall give a few simple checks of the above 
equation. Clearly, when either (i) the interface extends to the surface, or (ii) n, = 3, it 
follows that &,-(E&. = 0 as expected. When the interface extends to the centre, 
that is ti -+ 0, qi -, 0, we have, for the difference between the binding energies.of two 
complete models, one being a sphere with equation of state of the form p = K , p i  +'In1 

and the other an adiabatic sphere of index 3 

- (Eb)cs = 471pgca:0 lc2  Jqs 

+ 3(n, + 1) Jos $ n 1 + 2 q 2  dq) 

+41ipsn)oic2( 6 J: e7t4 d t +  12 0 d t )  (3.23) 

a massive sphere in which j N 0 corresponds to one with equation of state (2.12) with 
the classical binding energy zero. Since the third term in equation (3.23) does not 
depend on n, we should expect that the first and second terms correspond to E ,  and 
the third to (E,,)<,, namely 

After simple calculation it can easily be shown that equation (3.24) reduces to 

(3.24) 

(3.25) 

which is just the expression for the total energy of a fluid sphere with B - 0 obtained 
by Fowler (1964). Thus as expected equation (3.24) represents the negative binding 
energy - (Eb)c, of the complete configuration considered. 

Using this result we can readily obtain the binding energy of the composite model 
under consideration. For from equations (3.21) and (3.24) the binding energy of this 
model is given by 

E ,  = ~TC~,LY:CT,C~J,,, -471pgcU~~~C2(nl -3)?,13411+2 

(3.26) 



226 J C Hargreaves 

-0.5- 

-1.0- 

which will be written in the form 

Using expression (2.37) for the total mass M and equation (2.46) we obtain 

(3.27) 

(3.28) 

4. Numerical results 

In solving the equations of equilibrium for various positions of the interface and various 
values of n ,  we assume that jl is extremely small in the core. From consideration of the 
graphs given by Tooper (1965) for the binding energy of complete models the maximum 
binding energy of a composite configuration as a function of CT may be expected to occur 
for small values of CT and so the equations of hydrostatic equilibrium (2.33) and (2.34) 
are solved for various positions of the interface ti subject to the boundary conditions 
and assuming that CT << 1. 

In figures 2 and 3 the binding energy per unit mass is displayed as a function of the 
parameter CT for various positions of the interface (ti), n ,  being 1 in figure 2 and 2 in 
figure 3. We see that for a given n1 in the envelope the binding energy decreases with 
increasing ti for the range of values considered. In other words for a given value of n ,  
and CT the nearer the interface is to the centre the larger the binding energy. 

2 O t  
1 . 5 -  

1.0- 2 . 

G\ ‘ 2 5  

Figure 2. The dimensionless binding energy given by equation (3.28) versus the parameter 
o for n, = 1 in the envelope for various positions of the interface i;, . 

For complete models, using Chandrasekhar’s variational principle (1964), Tooper 
(1969,1965) has shown that instability sets in at the first peak of the binding energy as a 
function of c. Assuming that the same is true for composite models it would mean that 
in figures 2 and 3 instability would occur at the value of CT for which the binding energy 
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is a maximum for a given model and the model is unstable for larger values of 0, even 
though the binding energy is positive. 

The total energy of a fluid sphere exclusive of the rest-mass energy when infinitely 
dispersed from its equilibrium state is equal in magnitude but opposite in sign to the 
binding energy and this allows us to give a simple explanation of the onset of instability 
at the maximum of the binding energy regarded as a function of 0. Suppose om is the 
value of 0 at which the binding energy is a maximum or at which the internal energy 
required for hydrostatic equilibrium is a minimum. Then, if we consider the adiabatic 
expansion of a model for which 0 > om, the binding energy would be increased, in other 
words, the equilibrium energy required after expansion would be less than that required 
before the expansion and so further expansion would ensue. On the other hand for a 
model for which c < CT,, the opposite is true: after expansion more internal energy 
would be required to maintain equilibrium but since this is not forthcoming (it being 

Figure 3. The dimensionless binding energy given by equation (3.28) versus the parameter 
D for n, = 2 in the envelope for various positions of the interface 5 , .  

assumed that there is no energy generation in the core) the expansion stops. Consider 
next adiabatic contraction. In a configuration for which c > om, the binding energy 
would be reduced and hence the energy required for hydrostatic equilibrium would be 
increased ; since this energy is not made available in the adiabatic contraction further 
collapse must ensue. Again, for a configuration for which 0 <gm the opposite would be 
the case. Following contraction, less internal energy would be required to maintain 
equilibrium, and since this excess energy cannot be emitted, contraction stops. Thus we 
see that om, the value of 0 corresponding to maximum binding energy, may be regarded 
as the critical value of 0 at which instability sets in. 

From figures 2 and 3 we can also see how the position of the interface affects stability. 
For a given n ,  in the envelope, as ti increases (ie the model consists of more and more 
core) the maximum of the binding energy as a function of 0 moves to the left of the 
diagram, that is it occurs for smaller values of 0. Moreover for large values of ti (ie ti 
close to tS), the binding energy is always negative. For n ,  = 3 (or equivalently ti = tS) 
the classical binding energy is zero and the post-newtonian terms are negative. Thus in 
this case the binding energy is always negative and these objects are unstable over the full 
range of values of LT. But even in the case of small ti the models can become unstable, for 
sufficiently large values of 0, even when the binding energy is positive. 
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The application of an envelope to a core (for which n ,  = 3) has the effect of increasing 
the binding energy and produces a peak in the graph representing it as a function of G. 
The smaller the interfacial radius the higher is this peak and the larger the value of G~ at 
which it occurs. For a given ti we find that the smaller the value of n ,  the larger the 
value of G,,, at which the peak in the binding energy occurs. 

From the above considerations we can draw the following general conclusions. 
Given a core consisting of matter and radiation in which p, the ratio of the gas pressure 
to the total pressure, is an extremely small constant and an envelope fitted onto this core 
subject to the usual boundary conditions, the envelope being an adiabatic spherical shell 
of index n ,  < 3, we conclude that the envelope has a significant effect on the stability of 
the whole system in the sense that, the smaller the interfacial radius, the greater is the 
range of central density compatible with stability. 

Appendix 1 

Let 

Using equation (2.34) in the classical limit, that is, dV,/dg = @"'q2, we have 

and on integrating by parts we find that 

Using the generalization of the Lane-Emden equation (2.33) in the classical limit we 
obtain 

where we have used the condition that @qS) = 0 at the surface. Hence (A.1) becomes 

Appendix 2. Derivation of the gravitational potential energy in the envelope of a 
composite model 

We calculate the gravitational potential energy (in the classical limit) R i  of the outer 
part of the model (the envelope) between the interface r = ri and the surface r = R .  Thus 

Defining S ,  by 

dS, G M ,  
dr r2 

- 
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we obtain 

and hence 

where we have used the formula S ,  = -GM/R where subscript i, as before, denotes 
interfacial values. Consequently 

In the classical limit 

and so on integrating we have 

P - S r + S ,  = (n,+l)-. 
P 

Hence 

P GM 
P R  

-Sr = (nl + 1)-+- 

and thus 

Pi GM 
Pi R 

-Si = (nl+l)-+- 

Consequently, on using equations (A.4), (AS) and (A.6), we obtain 

1 G M  
+2 R Jr, dMr 

and so 

" 
[pdV (A.7) +- -+-(n, + l )LMi+-(nl  + 1) 

1GMT 1GM2 1 
-Q. = 

2 r i  2 R  2 Pi 2 

where dV = 4nr2 dr. 
Also 
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Hence 

Using (A.8) in (A.7) we have 

5 - n ,  
(A.9) 

This is the desired formula for the gravitational potential energy of the envelope. 
It may be noted that, in the particular case when the interface is at the centre of the 
model 

3 G M ~  Q = - -  
n , - 5  R 

(A.10) 

which is the usual expression for the gravitational potential energy of an adiabatic fluid 
sphere (or a polytrope) of index n,  (Fowler 1964 and Tooper 1965b). 
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